Abstract

To evaluate and compare the biomechanic rigidity and strength of 3 fixed-angle plates used to treat extra-articular distal radius fractures that are dorsally unstable. Volar fixed-angle plates were compared with a dorsal fixed-angle nail plate. Three plate constructs were tested: the dorsal nail plate (DNP), distal volar radius (DVR) plate, and locking compression plate (LCP) volar distal radius plate. With anatomic, third-generation, artificial composite radii, dorsally unstable extra-articular distal radius fracture models were made by cutting a wedge osteotomy with an 8-mm dorsal gap 1 cm from the articular surface. These models were then fixed with the 3 implants by the method recommended by the manufacturer. The proximal radii of each specimen were attached to the base of a materials testing machine with a probe centered at the radial side of the lunate fossa. The specimens were loaded at a constant rate to failure under axial compression. Load and displacement were plotted graphically, and the resulting rigidities and strengths of each plate were assessed statistically. The DVR group had significantly greater stiffness than the LCP group. The DVR group had significantly higher maximum loads than both the DNP and LCP groups. There were no significant differences in yield loads. Both the DNP and DVR groups had significantly less displacement at yield than the LCP group. These 3 groups had similar yield loads. However, the LCP was less stiff than the DVR and had more displacement at yield than both the DVR and DNP. The yield load of all 3 implants was much higher than previously described loads for active wrist and finger motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call