Abstract

We present a high-resolution gamma-ray computed tomography (CT) measurement system for the determination of cross-sectional time-averaged void distributions in thermo hydraulic facilities. The system has been carefully designed for harsh operating conditions, such as varying temperature fields and strong magnetic fields, typically produced by thermal hydraulic test loops with direct electric bundle heating. Measurements are non invasive, thus the two-phase flow in the test section is not influenced. The gamma-ray CT system consists of a collimated 137Cs isotopic source, a gamma radiation detector arc including 320 single elements, a pulse processing unit and a thermal stabilisation unit. The spatial resolution of the CT system is about 2 mm in plane. Recently, the thermal design of the detector arc is improved to secure maintenance of constant temperature of thermally sensitive components under changing environmental conditions. This turned out to be a key issue for achieving accurate quantitative measurements. First results of laboratory measurements on a bundle mock-up with this improved system are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.