Abstract

This article proposes a noninvasive computer-aided assessment approach based on optimized convolutional neural network for healthy and pathological voice detection. Firstly, the input voice samples are first transformed into mel-spectrogram time-frequency visual representations and fed for training the CNN model. The time-frequency image captures inherent speech variations beneficial for healthy and pathological voice sample detection. The weights and biases of trained CNN network are further optimized using artificial bee colony (ABC) optimization algorithm resulting in optimum CNN network employed for testing unseen data. The proposed approach is evaluated using three popular and publicly available datasets: SVD, AVPD and VOICED. Experimental results emphasize that proposed ABC optimized CNN model shows improved accuracy performance by 1.02% compared to conventional CNN network illustrating data-independent discriminative representation ability. Finally, gradient-weighted class activation mapping (Grad-CAM) explainable artificial intelligence (XAI) is utilized to make the decision understandable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call