Abstract
In this paper we investigate the proprieties of automatic speaker recognition (ASR) to develop a system for voice pathologies detection, where the model does not correspond to a speaker but it corresponds to group of patients who shares the same diagnostic. One of essential part in this topic is the database (described later), the samples voices (healthy and pathological) are chosen from a German database which contains many diseases, spasmodic dysphonia is proposed for this study. This problematic can be solved by statistical pattern recognition techniques where we have proposed the mel frequency cepstral coefficients (MFCC) to be modeled first, with gaussian mixture model (GMM) massively used in ASR then, they are modeled with support vector machine (SVM). The obtained results are compared in order to evaluate the more preferment classifier. The performance of each method is evaluated in a term of the accuracy, sensitivity, specificity. The best performance is obtained with 12 coefficientsMFCC, energy and second derivate along SVM with a polynomial kernel function, the classification rate is 90% for normal class and 93% for pathological class.This work is developed under MATLAB
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Computers in Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.