Abstract
In this study, we wanted to discriminate between two groups of people. The database used in this study contains 20 patients with Parkinson's disease and 20 healthy people. Three types of sustained vowels (/a/, /o/ and /u/) were recorded from each participant and then the analyses were done on these voice samples. Firstly, an initial feature vector extracted from time, frequency and cepstral domains. Then we used linear and nonlinear feature extraction techniques, principal component analysis (PCA), and nonlinear PCA. These techniques reduce the number of parameters and choose the most effective acoustic features used for classification. Support vector machine with its different kernel was used for classification. We obtained an accuracy up to 87.50 % for discrimination between PD patients and healthy people.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.