Abstract
In this study, we wanted to discriminate between 30 patients who suffer from Parkinson’s disease (PD) and 20 patients with other neurological diseases (ND). All participants were asked to pronounce sustained vowel /a/ hold as long as possible at comfortable level. The analyses were done on these voice samples. Firstly, an initial feature vector extracted from time, frequency and cepstral domains. Then we used principal component analysis (PCA) and nonlinear PCA (NPCA). These techniques reduce the number of parameters and select the most effective ones to be used for classification. Support vector machine and k-nearest neighbor with different kernels was used for classification. We obtained accuracy up to 88% for discrimination between PD patients ND patients using KNN with k equal to three and five.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.