Abstract

Mechanosensitive and voltage-gated ion channels are known to perform important roles in mechanotransduction in a number of connective tissues, including bone and muscle. It is hypothesized that voltage-gated and mechanosensitive ion channels also may play a key role in some or all initial responses of human tenocytes to mechanical stimulation. However, to date there has been no direct investigation of ion channel expression by human tenocytes. Human tenocytes were cultured from patellar tendon samples harvested from five patients undergoing routine total knee replacement surgery (mean age: 66 yr; range: 63-73 yr). RT-PCR, Western blotting, and whole cell electrophysiological studies were performed to investigate the expression of different classes of ion channels within tenocytes. Human tenocytes expressed mRNA and protein encoding voltage-operated calcium channel (VOCC) subunits (Ca alpha(1A), Ca alpha(1C), Ca alpha(1D), Ca alpha(2)delta(1)) and the mechanosensitive tandem pore domain potassium channel (2PK(+)) TREK-1. They exhibit whole cell currents consistent with the functional expression of these channels. In addition, other ionic currents were detected within tenocytes consistent with the expression of a diverse array of other ion channels. VOCCs and TREK channels have been implicated in mechanotransduction signaling pathways in numerous connective tissue cell types. These mechanisms may be present in human tenocytes. In addition, human tenocytes may express other channel currents. Ion channels may represent potential targets for the pharmacological management of chronic tendinopathies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.