Abstract
Stroke is the second leading cause of death worldwide. Although conventional treatments such as thrombolysis and mechanical thrombectomy are effective, their narrow therapeutic window limits long-term neurological recovery. Previous studies have shown that vagus nerve stimulation (VNS) enhances neurological recovery after ischemia/reperfusion (I/R) injury, and neuromedin U (NMU) has neuroprotective effects. This study used a mouse model of cerebral I/R injury to investigate the potential mechanisms of NMU in VNS-mediated neurological improvement. The study consisted of two parts: first, assessing the dynamic expression of NMU and NMUR2, which peaked on day 14 post-I/R. NMUR2 was primarily localized in astrocytes, suggesting that the NMU-NMUR2 signaling pathway plays an important role in astrocyte regulation. Next, interventions with VNS, NMU, and R-PSOP+VNS were conducted to evaluate the role of this pathway in VNS-mediated recovery. The results showed that VNS significantly upregulated NMU and NMUR2 expression, which was blocked by the NMUR2 antagonist R-PSOP. VNS and NMU treatment increased the proportion of A2 astrocytes, reduced A1 astrocytes, and enhanced the expression of VEGF and BDNF, all of which were also blocked by R-PSOP. These findings indicate that the "VNS-NMU-NMUR2-astrocyte A1/A2 polarization-VEGF/BDNF pathway" plays a crucial role in promoting neurovascular remodeling, axonal and dendritic regeneration, and synaptic plasticity, thereby contributing to functional recovery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have