Abstract

The area of sustainable green smart computing highlights key challenges towards reducing cost and carbon dioxide emissions due to the high-energy consumption of Cloud data centres. Here, we focus on the Cloud virtual machine (VM) scheduling that is usually based on simple algorithms, e.g. VM placement on nodes with low memory usage. This approach fails to consider the actual configuration of nodes inside the server rack resulting in local overheating of Cloud data centres. To solve this, we propose a VM scheduling algorithm based on the gravitational effect, called VMSAGE, to optimize energy efficiency of Cloud computing systems. Inspired by the physical gravitation model, we define the thermal repulsion and logical gravitation factors between physical nodes and VMs. To achieve optimized VM scheduling, we propose a gravitation function that refers to the calculation of the logical quality of each VM, host and rack through the algorithm, so as to draw the attractiveness between them. Based on the concept of dimension reduction, VMSAGE conducts the two-dimensional plane target selection twice to reduce the computational cost. Additionally, VMSAGE evaluates attributes of the computer room to carry out the VM deployment. To demonstrate the effectiveness of our solution, we compare it with the Best Fit Heuristic (BFH) and the dynamic voltage and frequency scaling (DVFS) algorithms. The results indicate that our algorithm achieves 10% and 20% optimized energy consumption respectively. The experimental results highlight our contribution, in where VMSAGE can significantly reduce energy consumption rates and VM migration times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.