Abstract

Cryptographic applications and pseudo random generator perform modular arithmetic three operand is the basic fundamental unit used in all these applications. For performing three operand additions, CSA (carry save adder) is one of the most widely used adders[5]. But in CSA in the final stage, carry is propagated which impacts the delay. Prefix parallel adders are therefore employed to get around this. The parallel prefix adders use more space even though performance in terms of latency is improved. Parallel prefix adders can also be used to build three operand adders. A brand-new, high-speed, and hardware-efficient adder technique is used to boost performance in terms of latency and area. This adder approach uses four stages to achieve three operand addition. Since Han Carlson adder is used in third stage, the suggested adder is not area efficient. To overcome this, in this paper we are replacing the Han Carlson parallel prefix adder with sklansky adder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.