Abstract

Fast Fourier transform (FFT) plays an important role in digital signal processing systems. In this study, the authors explore the very large-scale integration (VLSI) design of high-precision fixed-point reconfigurable FFT processor. To achieve high accuracy under the limited wordlength, this study analyses the quantisation noise in FFT computation and proposes the mixed use of multiple scaling approaches to compensate the noise. In addition, a statistics-based optimisation scheme is proposed to configure the scaling operations of the cascaded arithmetic blocks at each stage for yielding the most optimised accuracy for a given FFT length. On the basis of this approach, they further present a VLSI implementation of area-efficient and high-precision FFT processor, which can perform power-of-two FFT from 32 to 8192 points. By using the SMIC 0.13 μ m process, the area of the proposed FFT processor is 27 m m 2 with a maximum operating frequency of 400 MHz. When the FFT processor is configured to perform 8192-point FFT at 40 MHz, the signal-to-quantisation-noise ratio is up to 53.28 dB and the power consumption measured by post-layout simulation is 35.7 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.