Abstract
QR decomposition (QRD) is one of the most widely used numerical linear algebra (NLA) kernels in several signal processing applications. Its implementation has a considerable and an important impact on the system performance. As processor architectures continue to gain ground in the high-performance computing world, QRD algorithms have to be redesigned in order to take advantage of the architectural features on these new processors. However, in some processor architectures like very large instruction word (VLIW), compiler efficiency is not enough to make an effective use of available computational resources. This paper presents an efficient and optimized approach to implement Givens QRD in a low-power platform based on VLIW architecture. To overcome the compiler efficiency limits to parallelize the most of Givens arithmetic operations, we propose a low-level instruction scheme that could maximize the parallelism rate and minimize clock cycles. The key contributions of this work are as follows: (i) New parallel and fast version design of Givens algorithm based on the VLIW features (i.e., instruction-level parallelism (ILP) and data-level parallelism (DLP)) including the cache memory properties. (ii) Efficient data management approach to avoid cache misses and memory bank conflicts. Two DSP platforms C6678 and AK2H12 were used as targets for implementation. The introduced parallel QR implementation method achieves, in average, more than 12[Formula: see text] and 6[Formula: see text] speedups over the standard algorithm version and the optimized QR routine implementations, respectively. Compared to the state of the art, the proposed scheme implementation is at least 3.65 and 2.5 times faster than the recent CPU and DSP implementations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.