Abstract

Within the Vlasov’s kinetic theory, describing the plasma wake field interaction, the collective transport of a warm nonlaminar relativistic charged particle beam is analyzed in the strongly nonlocal regime, where the beam spot-size is much less than the plasma wavelength. This is done in the overdense regime, i.e., the beam density is much less than the plasma density. The beam is supposed to be sufficiently long to experience the adiabatic shielding by the plasma. In these conditions, we neglect the longitudinal beam dynamics and focus on the transverse one only. We derive the virial description (envelope description) from the 2D Vlasov-Poisson-type system of equations that governs the transverse self-consistent plasma wake field excitation. The resulting envelope equation is then reduced, in the aberration-less approximation, to a differential equation for the beam spot size, where the role of the ambient magnetic field is evaluated in both laboratory and astrophysical environments. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.