Abstract
A theoretical investigation of the quantum transverse beam motion for a cold relativistic charged particle beam travelling in a cold, collisionless, strongly magnetized plasma is carried out. This is done by taking into account both the individual quantum nature of the beam particles (single-particle uncertainty relations and spin) and the self consistent interaction generated by the plasma wake field excitation. By adopting a fluid model of a strongly magnetized plasma, the analysis is carried out in the overdense regime (dilute beams) and in the long beam limit. It is shown that the quantum description of the collective transverse beam dynamics is provided by a pair of coupled nonlinear governing equations. It comprises a Poisson-like equation for the plasma wake potential (driven by the beam density) and a 2D spinorial Schrödinger equation for the wave function, whose squared modulus is proportional to the beam density, that is obtained in the Hartree's mean field approximation, after disregarding the exchange interactions. The analysis of this pair of equations, which in general exhibits a strong nonlocal character, is carried out analytically as well as numerically in both the linear and the nonlinear regimes, showing the existence of the quantum beam vortices in the form of Laguerre-Gauss modes and ring envelope solitons, respectively. In particular, when the relation between the plasma wake field response and the beam probability density is strictly local, the pair of the governing equations is reduced to the 2D Gross-Pitaevskii equation that allows one to establish the conditions for the self focusing and collapse. These conditions include the quantum nature of the beam particles. Finally, when the relation between the plasma wake field response and the beam probability density is moderately nonlocal, the above pair of equations permits to follow the spatio-temporal evolution of a quantum ring envelope soliton. Such a structure exhibits small or violent breathing, but it remains very stable for long time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.