Abstract
The present contribution reports the use of mats of electrospun cellulose acetate (CA; acetyl content=39.8%; Mw=30,000 Da) nanofibers as carriers for delivery of the model vitamins, all-trans retinoic acid or vitamin A acid (Retin-A) and alpha-tocopherol or vitamin E (Vit-E). The amounts of Vit-E and Retin-A loaded in the base CA solution [17% w/v in 2:1 v/v acetone/N,N-dimethylacetamide (DMAc)] were 5 and 0.5 wt% (based on the weight of CA), respectively. Cross-sectionally round and smooth fibers were obtained. The average diameters of these fibers ranged between 247 and 265 nm. The total immersion of the vitamin-loaded as-spun CA fiber mats in the acetate buffer solutions containing either 0.5 vol % Tween 80 or 0.5 vol % Tween 80 and 10 vol % methanol was used to arrive at the cumulative release of the vitamins from the fiber mat samples. The same was also conducted on the vitamin-loaded solution-cast CA films for comparison. In most cases, the vitamin-loaded as-spun fiber mats exhibited a gradual and monotonous increase in the cumulative release of the vitamins over the test periods (i.e., 24 h for Vit-E-loaded samples and 6 h for Retin-A-loaded ones), while the corresponding as-cast films exhibited a burst release of the vitamins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have