Abstract

Diabetes, a chronic metabolic disease, affects approximately 422million people and leads to 1.5million deaths every year, It is found that 45% of individuals with diabetes eventually develop cognitive impairment. Here we study effects of Vitamin K2 on diabetes-associated cognitive decline (DACD) and its underlying mechanism. Diabetes was induced in adult Swiss albino mice with high-fat diet and a low dose (35mg/kg) of streptozotocin and measured by fasting glucose and HbA1c levels. After one week of development of diabetes, one group of animals received Vitamin K2 (100µg/kg) via oral gavage for 21 days. Then different behavioural studies, including the elevated plus maze, Morris water maze, passive avoidance test and novel object recognition test were performed followed by biochemical tests including AchE, different oxidative stress parameters (SOD, GSH, MDA, catalase, SIRT1, NRF2), inflammatory markers (TNFα, IL1β, MCP1, NFκB), apoptosis marker (Caspase 3). Hippocampal neuronal density was measured using histopathology. Vitamin K2 treatment in diabetic animals led to reduced fasting glucose and HbA1c, It could partially reverse DACD as shown by behavioural studies. Vitamin K2 adminstration reduced corticohippocampal AchE level and neuroinflammation (TNFα, IL1β, MCP1, NFκB, SIRT1). It reduced oxidative stress by increasing antioxidant enzymes (SOD, GSH, catalase), transcription factor NRF2 while reducing caspase 3. This eventually increased CA1 and CA3 neuronal density in diabetic animals. Vitamin K2 partially reverses DACD by increasing ACh while reducing the oxidative stress via Nrf2/ARE pathway and neuroinflammation, thus protecting the hippocampal neurons from diabetes associated damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.