Abstract

A protein similar to rat intestinal calcium-binding protein (CaBP) has been identified in both mouse placenta and mouse small intestine. The mouse protein had a molecular weight of approximately 10,000, exhibited cation-binding properties, and demonstrated immunologic identity with vitamin D-dependent rat CaBP. Under normal dietary conditions, the concentrations of CaBP in mouse placenta and intestine increased 6- and 3-fold, respectively, during the third trimester of pregnancy in parallel with the fetal demands for skeletal mineral. Studies of in vitro protein synthesis indicated that CaBP was synthesized by placental tissue. Slices of mouse or rat placental tissue (12-18-day gestation) were incubated with [3H]leucine and the biosynthesis of placental CaBP was quantified by an immunoprecipitation method using rabbit antiserum to rat intestinal CaBP. Sodium dodecyl sulfate gel electrophoresis of the radioactive immune complex revealed a single 3H-labeled peak corresponding to the molecular weight of rat and mouse CaBP (10,050). The amount of CaBP synthesized by mouse placental tissue was dependent upon gestational age of the placenta and reflected the in vivo changes in placental CaBP content observed during gestation. These data indicate that CaBP is synthesized by placenta and provide an in vitro model for studying the developmental control of placental CaBP synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.