Abstract
The purpose of this study was to assess the relationship between 25-hydroxyvitamin D (25(OH)D), urinary iodine concentration (UIC), and type 2 diabetes mellitus (T2DM) risk and complications and to establish a model to predict T2DM in the general population. A total of 567 adults (389 T2DM patients and 178 controls) were enrolled, and the levels of 25(OH)D, iodine, and blood biochemical parameters were measured. Pearson’s correlation analysis showed an inverse correlation between 25(OH)D level, UIC, and T2DM risk. Low 25(OH)D level was a risk factor for developing T2DM (OR, 0.81; 95% CI, 1.90–2.63; P = 0.043) after adjustment for multiple risk factors. 25(OH)D level and UIC were inversely correlated with short-term and long-term glucose levels. 25(OH)D deficiency was also associated with a high incidence of T2DM complicated with thyroid dysfunction. A prediction model based on 25(OH)D, iodine status, and other risk factors was established and recommended to screen high-risk T2DM in the general population and provide early screening and timely treatment for them.
Highlights
Diabetes mellitus is a widespread metabolic disorder
Logistic scores to predict type 2 diabetes mellitus (T2DM) risk probability in the Chinese population were obtained according to the following equation: T2DM risk probability = e(β0+∑βiXi), 1 + e(β0+∑βi Xi )
We found that vitamin D and iodine levels were much lower in T2DM patients than that in control subjects
Summary
Diabetes mellitus is a widespread metabolic disorder. In China, approximately 11% of the population has diabetes according to the latest reports [1,2]. The pathogenesis of type 2 diabetes mellitus (T2DM) includes relatively insufficient insulin secretion and insulin resistance [3,4]. The effects of nutritional risk factors on islet β-cell physiology, especially insulin secretion, have attracted great attention [5]. Avoiding β-cell dysfunction by regulating nutrients becomes an effective way to prevent diabetes. The effect of diet on various aspects of the immune system has always been studied. It has been reported that different types of proteins in diet directly affect the innate response of B lymphocytes to immunogenic stimulation [6]. High fat or high carbohydrate daily diet would decrease B lymphocytes, while the number of pancreatic CD20 + B cells was related to the loss of β cells, indicating an important role of diet regulation of B cells and islet β cells in the occurrence and development of diabetes mellitus [7,8]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have