Abstract

Abstract Vitamin C is used to treat anaemia; however, the mechanism through which vitamin C promotes erythroid differentiation is not comprehensively understood. The in vitro erythroid differentiation induction system can reveal the differentiation mechanism and provide erythrocytes for clinical transfusion and anaemia treatment. This process can be promoted by adding small-molecule compounds. In this study, we added l-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AA2P), a derivative of vitamin C, to an erythroid differentiation system induced from umbilical cord blood haematopoietic stem and progenitor cells in vitro and detected its effect on erythroid differentiation using single-cell transcription sequencing technology combined with non-targeted metabolism detection. AA2P increased the proportion of late basophilic erythroblasts, upregulating the expression of erythroid-related regulatory molecules GATA1, KLF1, ALAS2, and the globins HBG and HBB. CA1 is a target gene of AA2P, and CA1 knockdown affected the expression of globin-related genes. AA2P also increased glycolysis and decreased oxidative phosphorylation to facilitate terminal erythroid differentiation and enhanced the proliferation of early erythroid progenitors by altering the cell cycle. These results provide a reliable basis for using vitamin C to improve the efficiency of erythropoiesis in vitro and for the clinical treatment of anaemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.