Abstract

BackgroundExpansion protocols aim at both increasing the number of umbilical cord blood (UCB) hematopoietic stem cells and progenitor cells (HSPCs) and reducing the period of neutropenia in UCB HSPC graft. Because glycosaminoglycans (GAGs) are known to be important components of the hematopoietic niche and to modulate growth factor effects, we explored the use of GAG mimetic OTR4131 to potentiate HSPC’s in vitro expansion and in vivo engraftment.MethodsUCB CD34+ cells were expanded with serum-free medium, SCF, TPO, FLT3-lig and G-CSF during 12 days in the absence or the presence of increasing OTR4131 concentrations (0-100 μg/mL). Proliferation ratio, cell viability and phenotype, functional assays, migration capacity and NOD-scid/γc-/- mice engraftment were assessed after expansion.ResultsAt Day 12, ratios of cell expansion were not significantly increased by OTR4131 treatment. Better total nucleated cell viability was observed with the use of 1 μg/mL GAG mimetic compared to control (89.6 % ± 3.7 % and 79.9 % ± 3.3 %, respectively). Phenotype analysis showed a decrease of monocyte lineage in the presence of OTR4131 and HSPC migration capacity was diminished when GAG mimetic was used at 10 μg/mL (10.9 % ± 4.1 % vs. 52.9 % ± 17.9 % for control). HSPC clonogenic capacities were similar whatever the culture conditions. Finally, in vivo experiments revealed that mice successfully engrafted in all conditions, even if some differences were observed during the first month. Three months after graft, bone marrow chimerism and blood subpopulations were similar in both groups.ConclusionsUCB HSPCs ex-vivo expansion in the presence of OTR4131 is a safe approach that did not modify cell function and engraftment capacities. In our experimental conditions, the use of a GAG mimetic did not, however, allow increasing cell expansion or optimizing their in vivo engraftment.

Highlights

  • Expansion protocols aim at both increasing the number of umbilical cord blood (UCB) hematopoietic stem cells and progenitor cells (HSPCs) and reducing the period of neutropenia in UCB Hematopoietic stem cell and progenitor cell (HSPC) graft

  • According to the functional relevance of these GAG/ cytokine interactions in HSPC homeostasis regulation, we investigated in the present study whether the association of a GAG mimetic could optimize the in vitro clinical UCB-derived HSPC amplification procedure

  • In vitro evaluation of expanded HSPCs We first aimed at evaluating how GAG mimetic interacts with HSPCs

Read more

Summary

Introduction

Expansion protocols aim at both increasing the number of umbilical cord blood (UCB) hematopoietic stem cells and progenitor cells (HSPCs) and reducing the period of neutropenia in UCB HSPC graft. Despite numerous advantages of UCB, such as easy access and lack of ethical issues, UCB HSPC transplantation has been hampered by the lower HSPC number compared with that in bone marrow or peripheral blood stem cells, leading to a longer period of posttransplant neutropenia and a delayed immunological reconstitution [1]. The advanced understanding of HSPC biology induced the development of numerous ex vivo amplification protocols based on growth factors and cocultivation. An important milestone of such amplification protocols is to increase the amount of cells and their survival quality, in order to optimize their in vivo engraftment in the medullary compartment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call