Abstract
Vitamin B6 (vitB6) is a generic term that comprises six interconvertible pyridine compounds. These vitB6 compounds (also called vitamers) are pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL) and their 5′-phosphorylated forms pyridoxine 5′-phosphate (PNP), pyridoxamine 5′-phosphate (PMP) and pyridoxal 5′-phosphate (PLP). VitB6 is an essential nutrient for all living organisms, but only microorganisms and plants can carry out de novo synthesis of this vitamin. Other organisms obtain vitB6 from dietary sources and interconvert its different forms according to their needs via a biochemical pathway known as the salvage pathway. PLP is the biologically active form of vitB6 which is important for maintaining the biochemical homeostasis of the body. In the human body, PLP serves as a cofactor for more than 140 enzymatic reactions, mainly associated with synthesis, degradation and interconversion of amino acids and neurotransmitter metabolism. PLP-dependent enzymes are also involved in various physiological processes, including biologically active amine biosynthesis, lipid metabolism, heme synthesis, nucleic acid synthesis, protein and polyamine synthesis and several other metabolic pathways. PLP is an important vitamer for normal brain function since it is required as a coenzyme for the synthesis of several neurotransmitters including D-serine, D-aspartate, L-glutamate, glycine, γ-aminobutyric acid (GABA), serotonin, epinephrine, norepinephrine, histamine and dopamine. Intracellular levels of PLP are tightly regulated and conditions that disrupt this homeostatic regulation can cause disease. In humans, genetic and dietary (intake of high doses of vitB6) conditions leading to increase in PLP levels is known to cause motor and sensory neuropathies. Deficiency of PLP in the cell is also implicated in several diseases, the most notable example of which are the vitB6-dependent epileptic encephalopathies. VitB6-dependent epileptic encephalopathies (B6EEs) are a clinically and genetically heterogeneous group of rare inherited metabolic disorders. These debilitating conditions are characterized by recurrent seizures in the prenatal, neonatal, or postnatal period, which are typically resistant to conventional anticonvulsant treatment but are well-controlled by the administration of PN or PLP. In addition to seizures, children affected with B6EEs may also suffer from developmental and/or intellectual disabilities, along with structural brain abnormalities. Five main types of B6EEs are known to date, these are: PN-dependent epilepsy due to ALDH7A1 (antiquitin) deficiency (PDE-ALDH7A1) (MIM: 266100), hyperprolinemia type 2 (MIM: 239500), PLP-dependent epilepsy due to PNPO deficiency (MIM: 610090), hypophosphatasia (MIM: 241500) and PLPBP deficiency (MIM: 617290). This chapter provides a review of vitB6 and its different vitamers, their absorption and metabolic pathways in the human body, the diverse physiological roles of vitB6, PLP homeostasis and its importance for human health. Finally, the chapter reviews the inherited neurological disorders affecting PLP homeostasis with a special focus on vitB6-dependent epileptic encephalopathies (B6EEs), their different subtypes, the pathophysiological mechanism underlying each type, clinical and biochemical features and current treatment strategies.
Highlights
Vitamin B6 is a generic term that refers to a group of six interconvertible chemical compounds that share a pyridine ring in their centre
The central enzyme in this pathway is pyridoxine 5′-phosphate (PNP) oxidase (PNPO), a flavin mononucleotide (FMN)dependent enzyme that is capable of converting PNP or pyridoxamine 5′-phosphate (PMP) to the active cofactor
Based on early reports [57, 104, 105], PNPO deficiency has for some time been viewed as a disease that is only treatable by pyridoxal 5′-phosphate (PLP) but not PN
Summary
Vitamin B6 (vitB6) is a generic term that refers to a group of six interconvertible chemical compounds that share a pyridine ring in their centre. PNP and PMP are oxidized by PNPO to form PLP, which is released to the circulation bound to lysine-190 residue of albumin (Figure 3) [9–11]. Under high vitB6 intakes, the ingested amounts of PN or PM may surpass the intestine’s capacity to fully metabolize these vitamers In this case, PN and PM will be released to the portal circulation and will subsequently be converted to PLP in the liver. Earlier works in mice [13, 14] have pointed to a similar role of the intestine In these studies, following oral administration of radiolabeled PN, labeled PL and PLP were detected in the mouse intestine and portal circulation indicating involvement of the intestine in converting dietary vitamers to circulating PL [13, 14]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have