Abstract

ABSTRACT Aims Vitamin A (VA) deficiency triggers many diseases and is a worldwide nutrition problem. The Retinol acyltransferase (LRAT) is an indicator of VA storage function, and the relationship between LRAT and blood pressure level and the regulation mechanism will be elucidated. Methods 160 children aged 6–12 years were included, and the serum VA and, the transcription levels of LRAT and RARs, were measured. Spontaneously hypertensive rats (SHRs) and WKY rats were treated with VA deficiency (VAD) or normal (VAN) fodder for 20 weeks. LRAT, retinoic acid, renin angiotensin system (RAS) biomarkers, and the structure and function of the heart for SHRs were measured. Results The serum retinol and serum retinol/BMI levels were lower in children in the low LRAT group (LRAT<P50) compared with the high LRAT group (LRAT≥P50)(0.82 μmol/L vs. 0.94 μmol/L, 0.04 vs. 0.05, all P < .01). Moreover, SBP, DBP, and Ang Ⅱ were lower in the low LRAT group (all P < .01). Compared with VAN-treated SHRs, LRAT, retinoic acid receptor alpha (RARα), ACE2, and Ang (1–7) protein expression levels were decreased, while ACE and AT1R expression levels were increased in VAD SHRs. Notably, heart weight (HW), left ventricle weight, the HW-to-body weight ratio and the left ventricle weight-to-body weight ratio were significantly increased in VAD SHRs compared with those in VAN SHRs (P < .01). Cardiomyocyte hypertrophy and ventricular fibrosis were significantly increased in VAD SHRs compared with those in VAN SHRs (both P < .01). Conclusions LRAT may be an important biomarker of vitamin A deficiency in target organs and may regulate BP by affecting RAS biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call