Abstract
The timecourse and scalp topography of interactions between neural responses to stimuli in different visual quadrants, straddling either the vertical or horizontal meridian, were studied in 15 subjects. Visual evoked potentials (VEPs) were recorded from 64 electrodes during a simple reaction time (RT) task. VEPs to single stimuli displayed in different quadrants were summed (‘sum’) and compared to the VEP response from simultaneous stimulation of the same two quadrants (‘pair’). These responses would be equivalent if the neural responses to the single stimuli were independent. Divergence between the ‘pair’ and ‘sum’ VEPs indicates a neural response interaction. In each visual field, interactions occurred within 72–86 ms post-stimulus over parieto-occipital brain regions. Independent of visual quadrant, RTs were faster for stimulus pairs than single stimuli. This replicates the redundant target effect (RTE) observed for bilateral stimulus pairs and generalizes the RTE to unilateral stimulus pairs. Using Miller's ‘race’ model inequality (Miller J. Divided attention: evidence for coactivation with redundant signals, Cognitive Psychology 1982;14:247–79), we found that probability summation could fully account for the RTE in each visual field. Although measurements from voltage waveforms replicated the observation of earlier peak P1 latencies for the ‘pair’ versus ‘sum’ comparison (Miniussi C, Girelli M, Marzi CA. Neural site of the redundant target effect: electrophysiological evidence. Journal of Cognitive Neuroscience 1998;10:216–30), this did not hold with measurements taken from second derivative (scalp current density) waveforms. Since interaction effects for bilateral stimulus pairs occurred within 86 ms and require interhemispheric transfer, transcallosal volleys must arrive within 86 ms, which is earlier than previously calculated. Interaction effects for bilateral conditions were delayed by ≈10 ms versus unilateral conditions, consistent with current estimates of interhemispheric transmission time. Interaction effects place an upper limit on the time required for neuronal ensembles to combine inputs from different quadrants of visual space (≈72 ms for unilateral and ≈82 ms for bilateral conditions).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.