Abstract

Presentation of bilateral redundant visual stimuli produces faster reaction times (RT) than presentation of a single unilateral stimulus; an effect known as the redundant target effect (RTE; Miller, 1982), and is a means of testing interhemispheric visuomotor integration (Ouimet, 2009). RTEs that exceed expectations, based on Miller's race model of inequality (RMI), are referred to as "enhanced RTEs" and imply neural coactivation. Paradoxically, enhanced RTEs are observed in cases of corpus callosum disruption. The Hemispheric Coactivation Hypothesis accounts for this paradox by positing that bihemispheric processing occurs to both unilateral and bilateral stimuli in the normal brain, but occurs only with bilateral stimuli in the disconnected brain. Neuroimaging has revealed decreases in the microstructural integrity of the corpus callosum with age (Ota et al., 2006), but research investigating the bilateral RTE in healthy older individuals is lacking. The present study investigated the bilateral RTE in healthy younger and healthy older adults using simple RT and choice RT tasks. Our prediction that older individuals would show significantly larger RTEs than younger individuals was found to be true for both tasks. Tests of the RMI produced little evidence for coactivation. The crossed-uncrossed difference, generally used as a means of testing visuomotor interhemispheric transfer, was also investigated, but no age effects were found. The observation of greater RTE in age is congruent with the Hemispheric Coactivation hypothesis (Miller, 2004) in which callosal disconnection is associated with increased RTE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.