Abstract

Interactions between bimanual movements may occur at two different levels: at a visually based level, where movement trajectories are programmed within the visually perceived external space, and at the executional level, through crosstalk of sensorimotor signals arising during movement execution. In order to distinguish between these sources of interactions, we investigated bimanual reversal movements under different conditions of visual feedback. A visuomotor transformation dissociated movement execution from visual appearance on a computer screen. The transformation we used made movements of the same amplitude evoke different excursions, and made movements of different amplitudes entail matched excursions on the screen. The transformed conditions allowed us to study which parameters of bimanual coupling were related to the way movements were executed and which correlated with the visual movement display. We found a clear dissociation between execution-related and visually related bimanual interactions. The assimilation of movement amplitudes was completely execution-related. Whenever movements of different amplitudes were generated, the shorter movement was lengthened, irrespective of how the movements appeared on the feedback screen. In contrast, temporal coordination at the point of movement reversal, as well as trial-by-trial correlations of movement amplitudes, also showed significant effects of the visuomotor transformation, suggesting that these parameters are influenced by visually perceived effects of movements. This dissociation confirms the idea of separate pathways for bimanual interactions and shows that a specific set of bimanual interactions occur at least partly within a visually based external reference frame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.