Abstract

Sleep deprivation alters cognitive and sensorimotor function, but its effects on the control of standing balance are inconclusive. The vestibular system is critical for standing balance, and is modified by sleep deprivation; however, how sleep deprivation affects vestibular-evoked balance responses is unknown. Thus, this study aimed to examine the effect of 24h of sleep deprivation on the vestibular control of standing balance. During both a well-rested (i.e., control) and sleep deprivation condition, nine females completed two 90-s trials of bilateral, binaural stochastic electrical vestibular stimulation (EVS) and two 120-s trials of quiet stance on a force plate. Quiet stance performance was assessed by center of pressure displacement parameters. Mediolateral ground reaction force (ML force) and surface electromyography (EMG) of the right medial gastrocnemius (MG) were sampled simultaneously with the EVS signal to quantify vestibular control of balance within the frequency (gain and coherence) and time (cumulant density) domains. Twenty-four hours of sleep deprivation did not affect quiet stance performance. Sleep deprivation also had limited effect on EVS-MG EMG and EVS-ML Force coherence (less than control at 8-10.5Hz, greater at ~ 16Hz); however, gain of EVS-MG EMG (< 8, 11-24Hz) and EVS-ML force (0.5-9Hz) was greater for sleep deprivation than control. Sleep deprivation did not alter peak-to-peak amplitude of EVS-MG EMG (p = 0.51) or EVS-ML force (p = 0.06) cumulant density function responses. Despite no effect on quiet stance parameters, the observed increase in vestibular-evoked balance response gain suggests 24-h sleep deprivation may lead to greater sensitivity of the central nervous system when transforming vestibular-driven signals for standing balance control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.