Abstract

Characterization of subsurface morphology and mechanical properties with nanoscale resolution and depth control is of significant interest in soft matter fields like biology, polymer science, and even in future applications like nanomanufacturing, where buried structural and compositional features are important to the functionality of the system. However, controllably "feeling" the subsurface is a challenging task for which the available imaging tools are relatively limited. In this paper, we propose a trimodal atomic force microscopy (AFM) imaging scheme, whereby three eigenmodes of the microcantilever probe are used as separate control "knobs" to simultaneously measure the topography, modulate sample indentation by the tip during tip-sample impact, and map compositional contrast, respectively. We illustrate this multifrequency imaging approach through computational simulation and experiments conducted on ultrathin polymer films with embedded glass nanoparticles in ambient air. By actively increasing the tip-sample indentation using a higher eigenmode of the cantilever, we are able to gradually and controllably reveal glass nanoparticles which are buried tens of nanometers deep under the surface, while still being able to refocus on the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call