Abstract

Ultrafast laser microbeam is finding growing usage in causing highly localized damage to cellular structures. This has specifically enhanced efficiency of optoporation-injection of exogenous impermeable substances into the cell by transient pore formation. However, kinetics of laser microbeam induced pore formation and sealing of membrane has not been visualized at nanoscale resolution. Here, we report realization of live atomic force microscopy (AFM) imaging of ultrafast tunable Ti: Sapphire laser microbeam assisted cellular microsurgery. AFM imaging was carried out using Nanonics Multiview system in parallel to exposure of the laser beam. Red blood cells (RBCs) were chosen as cellular model for micro-surgery due to their smooth surface topography. The transparent nature of the Nanonics fiber-optic AFM cantilever allowed simultaneous bright field/phase contrast imaging of the RBC. Measurement of pore size by AFM revealed true pore size as a function of laser exposure duration in contrast to phase contrast imaging. Further, AFM imaging of live cells showed fine topography of sealed pores that could not be comprehended from conventional microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call