Abstract
Microtubules (MTs) are dynamic cytoskeletal polymers essential for mediating fundamental cellular processes, including cell division, intracellular transport, and cell shape maintenance. Understanding the arrangement of tubulin heterodimers within MTs is key to their function. Using frequency modulation atomic force microscopy (FM-AFM) and simulations, we revealed the submolecular arrangement of α- and β-tubulin subunits on the inner MT surface. We observed an undulating molecular arrangement of protofilaments (PFs) with alternating height variations, attributed to different structural orientations and the confirmation of αβ-tubulin heterodimers in adjacent PFs, forming bimodal lateral contacts, as confirmed by AFM simulations. Structural defects resulting from missing tubulin units were directly identified. This detailed structural information provides critical insight into the MT functional properties. Our findings highlight the potential of FM-AFM in liquid as a powerful tool for elucidating the complex interactions among MTs, MT-associated proteins, and other molecules, which are essential for understanding MT dynamics in the cellular context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.