Abstract
Wide-bandgap perovskite solar cells (PSCs) toward tandem photovoltaic applications are confronted with the challenge of device thermal stability, which motivates to figure out a thorough cognition of wide-bandgap PSCs under thermal stress, using in situ atomic-resolved transmission electron microscopy (TEM) tools combing with photovoltaic performance characterizations of these devices. The in situ dynamic process of morphology-dependent defects formation at initial thermal stage and their proliferations in perovskites as the temperature increased are captured. Meanwhile, considerable iodine enables to diffuse into the hole-transport-layer along the damaged perovskite surface, which significantly degrade device performance and stability. With more intense thermal treatment, atomistic phase transition reveals the perovskite transform to PbI2 along the topo-coherent interface of PbI2/perovskite. In conjunction with density functional theory calculations, a mutual inducement mechanism of perovskite surface damage and iodide diffusion is proposed to account for the structure-property nexus of wide-bandgap PSCs under thermal stress. The entire interpretation also guided to develop a thermal-stable monolithic perovskite/silicon tandem solar cell.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have