Abstract

Identifying quantum phases and phase transitions is key to understand complex phenomena in statistical physics. In this work, we propose an unconventional strategy to access quantum phases and phase transitions by visualization based on the distribution of ground states in Hilbert space. By mapping the quantum states in Hilbert space onto a two-dimensional feature space using an unsupervised machine learning method, distinct phases can be directly specified and quantum phase transitions can be well identified. Our proposal is benchmarked on gapped, critical, and topological phases in several strongly correlated spin systems. As this proposal directly learns quantum phases and phase transitions from the distributions of the quantum states, it does not require priori knowledge of order parameters of physical systems, which thus indicates a perceptual route to identify quantum phases and phase transitions particularly in complex systems by visualization through learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.