Abstract

Particulate bismuth vanadate (BiVO4) has attracted considerable interest as a promising photo(electro)catalyst for visible-light-driven water oxidation; however, overall water splitting (OWS) has been difficult to attain because its conduction band is too positive for efficient hydrogen evolution. Using photoscanning electrochemical microscopy (photo-SECM) with a chemically modified nanotip, we visualized for the first time the OWS at a single truncated bipyramidal microcrystal of phosphorus-doped BiVO4. The tip simultaneously served as a light guide to illuminate the photocatalyst and an electrochemical nanoprobe to observe and quantitatively measure local oxygen and hydrogen fluxes. The obtained current patterns for both O2 and H2 agree well with the accumulation of photogenerated electrons and holes on {010} basal and {110} lateral facets, respectively. The developed experimental approach is an important step toward nanoelectrochemical mapping of the activity of photocatalyst particles at the subfacet level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call