Abstract

Particulate photocatalysts for the overall water splitting (OWS) reaction offer promise as devices for hydrogen fuel generation. Even though such photocatalysts have been studied for nearly 5 decades, much of the understanding of their function is derived from observations of catalyst ensembles and macroscopic photoelectrodes. This is because the sub-micrometer size of most OWS photocatalysts makes spatially resolved measurements of their local reactivity very difficult. Here, we employ photo-scanning electrochemical microscopy (photo-SECM) to quantitatively measure hydrogen and oxygen evolution at individual OWS photocatalyst particles for the first time. Micrometer-sized Al-doped SrTiO3/Rh2-yCryO3 photocatalyst particles were immobilized on a glass substrate and interrogated with a chemically modified SECM nanotip. The tip simultaneously served as a light guide to illuminate the photocatalyst and as an electrochemical nanoprobe to observe oxygen and hydrogen fluxes from the OWS. Local O2 and H2 fluxes obtained from chopped light experiments and photo-SECM approach curves using a COMSOL Multiphysics finite-element model confirmed stoichiometric H2/O2 evolution of 9.3/4.6 μmol cm-2 h-1 with no observable lag during chopped illumination cycles. Additionally, photoelectrochemical experiments on a single microcrystal attached to a nanoelectrode tip revealed a strong light intensity dependence of the OWS reaction. These results provide the first confirmation of OWS at single micrometer-sized photocatalyst particles. The developed experimental approach is an important step toward assessing the activity of photocatalyst particles at the nanometer scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call