Abstract
Adhesion is a technology for assembling carbon fiber (CF) reinforced polymer (CFRP), enabling them to maintain their lightweight and high-stiffness properties. Despite the importance of adhesion, the lack of a molecular-level understanding of the adhesion mechanisms has limited the reliability of adhesion for use in next-generation aircraft and automobiles. Here, we focused on the chemical-state distribution at a practical adhesive interface composed of an epoxy-based adhesive film bonded to an epoxy-based CF matrix. By fluorinating the OH group, we succeeded in visualizing the chemical state at the CF-matrix/adhesive interface using soft X-ray microscopy. The soft X-ray images exhibited a decrease in OH-related signals at the interface due to the local chemical interaction at the epoxy-epoxy adhesive interface. We also found that the N and O Kα signals were observable at the CF's surface, indicating the presence of nitrogen- and oxygen-containing functional groups. Based on these observations, we discuss the molecular-level adhesion mechanism at the CF-matrix/adhesive interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.