Abstract

Disposal of the waste from carbon fiber reinforced polymers (CFRPs) has become an urgent problem due to the increasing application of CFRPs in many industries. A novel method for the rapid recovery of carbon fibers by a microwave pyrolysis and oxidation process was proposed in this study. The resin matrix was rapidly pyrolyzed by heating CFRPs directly with microwave radiation, and then the residual carbon and organic matter on the surface of carbon fibers were removed by oxidation to obtain recycled carbon fibers (RCFs). The recovery rate of recycled carbon fibers was measured, and their mechanical properties were evaluated by tensile strength and tensile modulus tests. The results showed that, after microwave pyrolysis at 500 °C for 15 min and oxidation at 550 °C for 30 min, the maximum tensile strength of RCFs was 3042.90 MPa (about 99.42% of that of virgin carbon fibers), the tensile modulus was 239.39 GPa, and the recovery rate was about 96.5%. The microstructure and chemical composition of RCFs were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy, and the components of the pyrolysis byproducts were detected by gas chromatography–mass spectrometry. These results indicate that this method is suitable for the effective recovery of high-quality carbon fibers from CFRPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call