Abstract
Enantiomer separation is a critical step in many chemical syntheses, particularly for pharmaceuticals, but prevailing chemical methods remain inefficient. Here, we introduce an optical technique to sort chiral specimens using coaxial plasmonic apertures. These apertures are composed of a deeply subwavelength dielectric channel embedded in silver (or gold) and can stably trap sub-20-nm dielectric specimens. Using both full-field simulations and analytic calculations, we first show that selective trapping of enantiomers can be achieved with circularly polarized illumination and proper index-matching of the immersed liquid with the particles being trapped. Opposite enantiomers experience distinct trapping forces in both sign and magnitude: one is trapped in a deep potential well while the other is repelled with a potential barrier. These potentials maintain opposite signs across a range of chiral polarizabilities and enantiomer-aperture separations. We also demonstrate how atomic force microscopy can be used to directly probe the near field optical forces from our coaxial nano-aperture. Our measurement reveals the spatial distribution of the optical near-field forces on a nanometer-sized dielectric specimen. To directly visualize the enantio-selective optical forces, we pattern silicon AFM-probes with chiral patterns. Our near-field force mapping indicates a differentiable force in the piconewton range on the chiral probes, exerted by our coaxial aperture with circularly polarized illumination. Our theoretical and experimental demonstrations indicate that the interaction of chiral light and chiral specimens can be mediated by achiral plasmonic apertures, providing a possible route toward all-optical enantiopure syntheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.