Abstract

Enantiomer separation is a critical step in many chemical syntheses, particularly for pharmaceuticals, but prevailing chemical methods remain inefficient. Here, we introduce an optical technique to sort chiral specimens using coaxial plasmonic apertures. These apertures are composed of a deeply subwavelength silica channel embedded in silver and can stably trap sub-20 nm dielectric nanoparticles. Using both full-field simulations and analytic calculations, we show that selective trapping of enantiomers can be achieved with circularly polarized illumination. Opposite enantiomers experience distinct trapping forces in both sign and magnitude: one is trapped in a deep potential well, while the other is repelled with a potential barrier. These potentials maintain opposite signs across a range of chiral polarizabilities and enantiomer–aperture separations. Our theory indicates that the interaction of chiral light and chiral specimens can be mediated by achiral plasmonic apertures, providing a possible route to...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.