Abstract

Amyloid-β (Aβ) causes memory impairments in Alzheimer's disease (AD). Although therapeutics have been shown to reduce Aβ levels in the brains of AD patients, these do not improve memory functions. Since Aβ aggregates in the brain before the appearance of memory impairments, targeting Aβ may be inefficient for treating AD patients who already exhibit memory deficits. Therefore, downstream signaling due to Aβ deposition should be blocked before AD development. Aβ induces axonal degeneration, leading to the disruption of neuronal networks and memory impairments. Although there are many studies on the mechanisms of Aβ toxicity, the source of Aβ toxicity remains unknown. To help identify the source, we propose a novel protocol that uses microscopy, gene transfection, and live cell imaging to investigate early changes caused by Aβ in axonal growth cones of cultured neurons. This protocol revealed that Aβ induced clathrin-mediated endocytosis in axonal growth cones followed by growth cone collapse, demonstrating that inhibition of endocytosis prevents Aβ toxicity. This protocol will be useful in studying the early effects of Aβ and may lead to more efficient and preventative AD treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.