Abstract
Alzheimer's disease (AD) and semantic dementia (SD) are both characterized by severe atrophy in the hippocampus, a brain region underlying episodic memory; paradoxically, episodic memory is relatively preserved in SD. Here, we used intrinsic connectivity analyses and showed that the brain networks differentially vulnerable to each disease converge to the hippocampus in the healthy brain. As neurodegeneration is thought to spread within preexisting networks, the common hippocampal atrophy in both diseases is likely due to its location at the crossroad between both vulnerable networks. Yet, we showed that in the normal brain, these networks harbor different functions, with episodic memory relying on the AD-vulnerable network only. Overall, disease-associated cognitive deficits seem to reflect the disruption of targeted networks more than atrophy in specific brain regions: in AD, over hippocampal atrophy, episodic memory deficits are likely due to disconnection within a memory-related network.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.