Abstract
The inflow ahead of a rotating propeller attached to a container ship model was visualized using a two-frame particle image velocimetry (PIV) technique. For illuminating the inflow region, a transparent window was installed at the stern of the ship model. Ensemble-averaged mean velocity fields were measured at four different blade phases under the design loading condition. The characteristics of the inflow in the upper plane above the propeller axis are quite different from those below the propeller axis. In the far upstream region above the propeller axis, most of the inflow comes from the hull wake and the axial velocity is very small. As the inflow moves toward the propeller plane, its axial velocity component increases rapidly. In addition, the variation of the inflow characteristics with respect to phase angle becomes apparent. The thick hull boundary layer and out-of-plane motion resulting from the propeller rotation produce a large turbulent kinetic energy around the tip of the propeller blade in the upper inflow region. The axial velocity distribution of the propeller inflow is asymmetric with respect to the vertical center axis, exhibiting different axial velocities on the port and starboard sides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.