Abstract

Flow characteristics of the hull wake behind a container ship model were investigated under different loading conditions (design and ballast loadings) by employing the particle image velocimetry (PIV) technique. Measurements were made at four transverse locations and two longitudinal planes for three Reynolds numbers (Re) (= U 0 Lpp/ ν, where U 0 is the freestream velocity, Lpp is the length between two perpendiculars of the ship model and ν is the kinematic viscosity) of 5.08×10 5, 7.60×10 5, and 1.01×10 6. It was observed that symmetric, large-scale, longitudinal counter-rotating vortices (with respect to centerline) of nearly the same strength were formed in the near wake. For the ballast-loading condition, the vortices appear at propeller plane below the propeller-boss. The vortex center exhibits a significant upward shift near the propeller-boss as the Reynolds number increase, and as the flow moves downstream. Under the design-loading condition, the vortices first appear at a further downstream location than that for the ballast-loading condition above the propeller-boss. This difference in the flow structure can significantly change the inflow conditions to the propeller blades, such as the streamwise mean velocity profiles and turbulence intensity distributions at the propeller plane. In particular, under the ballast-loading condition, asymmetric inflow may weaken the propulsion and cavitation performance of the marine propeller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.