Abstract

Rayleigh-Bénard convection is not only a classical problem in fluid dynamics but plays also an important role in many metallurgical and crystal growth applications. The measurement of the flow field and of the dynamics of the emerging large-scale circulation in liquid metals is a challenging task due to the opaqueness and the high temperature of the melts. Contactless inductive flow tomography is a technique to visualize the mean three-dimensional flow structure in liquid metals by measuring the flow induced magnetic field perturbations under the influence of one or several applied magnetic fields. In this paper, we present the first measurements of the flow induced magnetic field in a Rayleigh-Bénard setup, which are also used to investigate the dynamics of the large-scale circulation. Additionally, we investigate numerically the quality of the reconstruction of the three-dimensional flow field for different sensor configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.