Abstract

The paper presents the study of the gas-dynamic structure of air plasma flows produced by the PNK-50 spray torch using the shadow (schlieren) method. The operation of the plasma torch was studied in three different configurations, differing, among other things, by the diameter of the output section of the channel: 6, 8, 10 mm. The subsonic and supersonic modes of operation of the plasma torch were investigated in the range of plasma-forming air flow 1.4-10.5 g / s and arc current range 140-230 A.In all typical modes of operation of the plasma torch, the flow has a developed turbulent structure with a full angle of jet opening between 23 and 27 degrees. An additional mode of operation of the plasma torch with an output nozzle diameter of 14 mm allowed the realization of a laminar flow regime. It is established that the laminar-turbulent transition is observed in the range of Reynolds numbers 400 - 900. The pattern of supersonic flow impinging a flat barrier - a substrate for placedat a distance of 85 mm from the plasma torch, is visualized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call