Abstract
Thermography imaging can be applied for the surface of an SOFC electrode to evaluate the spatial distribution of reforming and electrode reactions. For getting a correct temperature distribution by thermography, emissivity change on the object surface caused by chemical reactions or material coverage must be precisely evaluated. In-situ observation using both infrared and visible light dual cameras enables us to obtain precise emissivity change and thus temperature distribution, because the influence of emissivity change can be corrected by the visible light imaging technique. In this study, this imaging method is applied for an anode material which was exposed to a fuel flow causing coke formation, and the information on the carbon distribution was successfully separated on the anode surface to obtain the true temperature distribution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have