Abstract
The Semantic Differential (SD) Method is a rating scale to measure the semantics. Attributes of SD are constructed by collecting the responses of participant’s impressions of the objects expressed through Likert scales representing multiple contrasting with some adjective pairs, for example, dark and bright, formal and casual, etc. Impression evaluation can be used as an index that reflects a human subjective feelings to some extent. Impression evaluations using the SD method consist of the responses of many participants, and therefore, the individual differences in the impressions of the participants greatly affect the content of the data. In this study, we propose a visualization system to analyze three aspects of SD, objects (images), participants, and attributes defined by adjective pairs. We visualize the impression evaluation data by applying dimension reduction so that, users can discover the trends and outliers of the data, such as images that are hard to judge or participants that act unpredictably. The system firstly visualizes the attributes or color distribution of the images by applying a dimensional reduction method to the impression or RGB values of each image. Then, our approach displays the average and median of each attribute near the images. This way, we can visualize the three aspects of objects, participants and attributes on a single screen and observe the relationships between image features and user impressions / attribute space. We introduce visualization examples of our system with the dataset inviting 21 participants who performed impression evaluations with 300 clothing images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.