Abstract

Nitrate (NO3−) and nitrite (NO2−) are the physiological sources of nitric oxide (NO), a key biological messenger molecule. NO3−/NO2− exerts a beneficial impact on NO homeostasis and its related cardiovascular functions. To visualize the physiological dynamics of NO3−/NO2− for assessing the precise roles of these anions, we developed a genetically encoded intermolecular fluorescence resonance energy transfer (FRET)-based indicator, named sNOOOpy (sensor for NO3−/NO2− in physiology), by employing NO3−/NO2−-induced dissociation of NasST involved in the denitrification system of rhizobia. The in vitro use of sNOOOpy shows high specificity for NO3− and NO2−, and its FRET signal is changed in response to NO3−/NO2− in the micromolar range. Furthermore, both an increase and decrease in cellular NO3− concentration can be detected. sNOOOpy is very simple and potentially applicable to a wide variety of living cells and is expected to provide insights into NO3−/NO2− dynamics in various organisms, including plants and animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.