Abstract
Fluorescence resonance energy transfer between epidermal growth factor (EGF) molecules, labeled with fluorescent reporter groups, was used as a monitor for EGF receptor-receptor interactions in plasma membranes isolated from human epidermoid A431 cells. Epidermal growth factor molecules labeled at the amino terminus with fluorescein isothiocyanate served as donor molecules in these energy transfer measurements, while EGF molecules labeled with eosin isothiocyanate at the amino terminus served as the energy acceptors. Both of these derivatives were shown to be active in binding to membrane receptors and in the activation of the endogenous receptor/tyrosine kinase activity. We found that membranes in the absence of added metal ion activators showed relatively little energy transfer (approximately 10% donor quenching) between the labeled growth factors. However, divalent metal ion activators of the EGF receptor/tyrosine kinase caused a significant increase in the extent of energy transfer between the labeled EGF molecules. Specifically, in the presence of 20 mM MgCl2, the extent of quenching of the donor fluorescence increased to 25% (from 10% in the absence of metal), while in the presence of 4 mM MnCl2, the extent of energy transfer was increased still further to 40-50%. The addition of an excess of EDTA resulted in the reversal of the observed energy transfer to basal levels. The increased energy transfer in the presence of these divalent cations correlated well with the ability of these metals to stimulate the EGF receptor/tyrosine kinase activity. However, the extent of receptor-receptor interactions measured by energy transfer was independent of receptor autophosphorylation. Overall, these results suggest that conditions under which the EGF receptor is primed to be active as a tyrosine kinase, within a lipid milieu, result in an increased aggregation of the receptor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have