Abstract

In quasi-two dimensions (quasi-2D), where excitations are frozen in one direction, the scattering amplitudes exhibit 2D features of the particle motion and a 3D to 2D dimensional crossover emerges in the behavior of scattering. We explore its physical consequences, capitalizing on a hidden connection between the Pitaevskii-Rosch dynamical symmetry and breathing modes. We find broken Pitaevskii-Rosch symmetry by arbitrarily small 2D effects, inducing a frequency shift in breathing modes. The predicted shift rises significantly from the order of 0.5% to more than 5% in transiting from the 3D-scattering to the 2D-scattering regime. Comparisons with other relevant effects suggest our results are observable within current experimental capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.