Abstract

Distribution system analysis requires yearlong quasi-static time-series (QSTS) simulations to accurately capture the variability introduced by high penetrations of distributed energy resources (DER) such as residential and commercial-scale photovoltaic (PV) installations. Numerous methods are available that significantly reduce the computational time needed for QSTS simulations while maintaining accuracy. However, analyzing the results remains a challenge; a typical QSTS simulation generates millions of data points that contain critical information about the circuit and its components. This paper provides examples of visualization methods to facilitate the analysis of QSTS results and to highlight various characteristics of circuits with high variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call