Abstract
This paper introduces a self-organizing map dedicated to clustering, analysis and visualization of categorical data. Usually, when dealing with categorical data, topological maps use an encoding stage: categorical data are changed into numerical vectors and traditional numerical algorithms (SOM) are run. In the present paper, we propose a novel probabilistic formalism of Kohonen map dedicated to categorical data where neurons are represented by probability tables. We do not need to use any coding to encode variables. We evaluate the effectiveness of our model in four examples using real data. Our experiments show that our model provides a good quality of results when dealing with categorical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.